

[A Unit of Vivekananda Vidyavardhaka Sangha, Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Govt of Karnataka

OR

4. (a) Obtain the Fourier series of the function f(x) = x for $0 \le x \le \pi$ and $f(x) = 2\pi$ - x for

 $\pi \le x \le 2\pi$ and hence deduce the sum of the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

07 marks

(b) Find the half range cosine series for the function f(x)= $(x - 1)^2$ in $0 \le x \le 1$ 06 marks

(c) The following value of function y gives the displacement in inches of a certain machine part for rotations x of a flywheel. Expand y in terms of Fourier series up to second harmonics
 07 marks

x	0	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$	π
у	0	9.2	14.4	17.8	17.3	11.7	0

Module-3

5. (a) If $f(x) = \begin{cases} 1 - x^2 \text{ for } |x| \le 1 \\ 0 & \text{ for } |x| > 1 \end{cases}$ Find the infinite Fourier transform of f(x) and hence Evaluate $\int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \left(\frac{x}{2} \right) dx$ 07 marks (b) Find the Fourier cosine transform of f(x) = $\begin{cases} 4x & \text{if } 0 < x < 1\\ 4 - x & \text{if } 1 < x < 4\\ 0 & \text{if } x > 4 \end{cases}$ 06 marks (c) Solve $u_{n+2} - 3u_{n+1} + 2u_n = 3^n$ given $u_0 = u_1 = 0$ 07 marks OR 6. (a) Find the Fourier Sine transform of $e^{-|x|}$ and hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^{2}} dx = \frac{\pi}{2} e^{-m}, m > 0$ 07 marks (b) Find the z-transform of $u_n = \cosh\left(\frac{n\pi}{2} + \theta\right)$ 06 marks (c) Find the inverse z-transform of $\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}$ 07 marks Prepared by: M Ramananda Kamath, HOD, Basic Science

[A Unit of Vivekananda Vidyavardhaka Sangha, Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Govt of Karnataka

Module-4

- 7. (a) Find by Taylor's series method the value of y at x =0.1 and x=0.2 for the IVP $\frac{dy}{dx} = x^2y - 1; y(0) = 1$ 07 marks
 - (b) Use Runge Kutta method of fourth order to solve $\frac{dy}{dx} + y = 2x$ at x=1.1 given that

y (1) =3. Take h =0.106 marks(c) Given
$$\frac{dy}{dx} = xy + y^2$$
 with y(0)=1, y(0.1)=1.1169, y(0.2)=1.2773 y(0.3)=1.5049.Find y(0.4) using Milne's Predictor Corrector method07 marks

OR

- 8. (a) Given dy/dx = x + siny, y(0)=1 Compute y(0.4) with h=0.2 using modified Euler's Method
 07 marks
 (b) Apply Runge Kutta method of fourth order to find an approximate value of y when
 - x=0.5 given that (x+y) $\frac{dy}{dx}$ = 1, y (0.4) =1. Take h=0.1 06 marks
 - (c) Using Adam Bashforth predictor corrector method find y (1.4) given that dy = 2

$$\frac{dy}{dx} = x^2(1+y)$$
 with 07 marks

Х	1	1.1	1.2	1.3
у	1	1.233	1.548	1.979

Module-5

9. (a) Given $y^{\parallel} - y - xy^{\parallel} = 0$ with the initial conditions y(0) = 1, $y^{\parallel}(0) = 0$ compute y(0.2), $y^{\parallel}(0.2)$ using Runge Kutta method of Fourth order 07 marks (b) Derive Euler's equation in the standard form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y^{\parallel}} \right) = 0$ 06 marks (c) Find the curves on which the functional $\int_{0}^{1} \left(y^{\parallel^{2}} + 12xy \right) dx$ with y(0) = 0, y(1) = 1 can be extremised 07 marks **OR**

Prepared by: M Ramananda Kamath, HOD, Basic Science

[A Unit of Vivekananda Vidyavardhaka Sangha, Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Govt of Karnataka

10. (a) Apply Milne's Predictor corrector method to compute $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ and the

following table of initial values

07 marks

Х	0	0.1	0.2	0.3
У	1	1.1103	1.2427	1.3990
y۱	1	1.2103	1.4427	1.6990

(b) Find the extremal of the functional $\int_{x_1}^{x_2} (y^2 + {y'}^2 + 2ye^x) dx$

06 marks 07 marks

(c) Prove that geodesics of a plane surface are straight lines

[A Unit of Vivekananda Vidyavardhaka Sangha, Puttur ®] Affiliated to Visvesvaraya Technological University Approved by AICTE New Delhi & Govt of Karnataka

Prepared by: M Ramananda Kamath, HOD, Basic Science